If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2+64=607
We move all terms to the left:
a^2+64-(607)=0
We add all the numbers together, and all the variables
a^2-543=0
a = 1; b = 0; c = -543;
Δ = b2-4ac
Δ = 02-4·1·(-543)
Δ = 2172
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2172}=\sqrt{4*543}=\sqrt{4}*\sqrt{543}=2\sqrt{543}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{543}}{2*1}=\frac{0-2\sqrt{543}}{2} =-\frac{2\sqrt{543}}{2} =-\sqrt{543} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{543}}{2*1}=\frac{0+2\sqrt{543}}{2} =\frac{2\sqrt{543}}{2} =\sqrt{543} $
| x-3+8+4-3=16+8 | | 96=8(3+3k) | | -9(x-2)=-6x+27 | | 12y-6y+y-6y+2y=15 | | 9×700=x | | 6r=-28 | | -3x-48=-6(x+3) | | -3x-48=-6(x+3 | | 14v-13v=18 | | -135=3(-6b+3) | | 10n^2-11n-15=-18 | | 4x+5/7+3x=x/7-1/9 | | 6(x-3)=-9x-48 | | 20k-16k=12 | | 3x+2x+10+5=50+100+200 | | 80/300=x | | 1000+1200x=1500-1175x | | 15w-14w=2 | | 10=w/2+8 | | 0.1(10)=(x)(50) | | 5d+15d=20 | | x-3+8-7+x=-3+8+4-6+10 | | 4/20=m | | y+2y=15y | | 4x+2x-10=-2x+70 | | 1/2(2x+2)=11-2x | | 8v−4(v+8)=8 | | 400=m/2000 | | 1(100)=0.0(x) | | 5.9x10^27= | | 6.07x+100=36.8449+10x | | 6.07x+100=36.8449+1-x |